On the reliability of computed chaotic solutions of nonlinear differential equations

نویسنده

  • Shijun Liao
چکیده

In this paper a new concept, namely the critical predictable time Tc, is introduced to give a more precise description of computed chaotic solutions of nonlinear differential equations: it is suggested that computed chaotic solutions are unreliable and doubtable when t > Tc. This provides us a strategy to detect reliable solution from a given computed result. In this way, the computational phenomena, such as computational chaos (CC), computational periodicity (CP) and computational prediction uncertainty, which are mainly based on long-term properties of computed time series, can be completely avoided. Using this concept, the famous conclusion “accurate long-term prediction of chaos is impossible” should be replaced by a more precise conclusion that “accurate prediction of chaos beyond the critical predictable time Tc is impossible”. So, this concept also provides us a time-scale to determine whether or not a particular time is long enough for a given nonlinear dynamic system. Besides, the influence of data inaccuracy and various numerical schemes on the critical predictable time is investigated in details by using symbolic computation software as a tool. A reliable chaotic solution of Lorenz equation in a rather large interval 0 ≤ t < 1200 non-dimensional Lorenz time units is obtained for the first time. It is found that the precision of initial condition and computed data at each time-step, which is mathematically necessary to get such a reliable chaotic solution in such a long time, is so high that it is physically impossible due to the Heisenberg uncertainty principle in quantum physics. This however provides us a so-called “precision paradox of chaos”, which suggests that the prediction uncertainty of chaos is physically unavoidable, and that even the macroscopical phenomena might be essentially stochastic and thus could be described by probability more economically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method

In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.

متن کامل

An application of differential transform method for solving nonlinear optimal control problems

In this paper, we present a capable algorithm for solving a class of nonlinear optimal control problems (OCP's). The approach rest mainly on the differential transform method (DTM) which is one of the approximate methods. The DTM is a powerful and efficient technique for finding solutions of nonlinear equations without the need of a linearization process. Utilizing this approach, the optimal co...

متن کامل

Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations

The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...

متن کامل

Exact travelling wave solutions for some complex nonlinear partial differential equations

This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion  ethod for  constructing exact travelling wave solutions of nonlinear partial  differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and  Derivat...

متن کامل

Numerical solutions of nonlinear fuzzy Fredholm integro-differential equations of the second kind

In this paper, we use parametric form of fuzzy number, then aniterative approach for obtaining approximate solution for a classof nonlinear fuzzy Fredholmintegro-differential equation of the second kindis proposed. This paper presents a method based on Newton-Cotesmethods with positive coefficient. Then we obtain approximatesolution of the nonlinear fuzzy integro-differential equations by an it...

متن کامل

On the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative

The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009